If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+10r=24
We move all terms to the left:
r^2+10r-(24)=0
a = 1; b = 10; c = -24;
Δ = b2-4ac
Δ = 102-4·1·(-24)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-14}{2*1}=\frac{-24}{2} =-12 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+14}{2*1}=\frac{4}{2} =2 $
| (x+3/2)+(x+1/4)=10 | | –2y+16+6y=44 | | 285-v=197 | | -32+4n=-4(1+6n) | | 22=2(w+17) | | 160=73-y | | 7+8x+2=8x-1 | | x+16/6=1/3x | | x+3/2+x+1/4=10 | | X/4-x/8=1 | | 7x^2=0+19 | | 5(m+5)=90 | | -9-a÷4=5 | | 2-(3b-40)=8b-11 | | (X+1)=3(x-2) | | X+5/3=2/3x | | -4x-2=1 | | 6=-x+201 | | 21–3(2–w)=-12 | | 5(p-70)+3=78 | | -6=4m+1-7 | | m+6+2m-16=1-8m | | H^2-18h=-72 | | 9-x/2=x+3 | | 7x^2/19=0 | | x=2x+67 | | 14=7x/10-7 | | y+3.9=7.87 | | -9-(a/4)=5 | | a+1=15 | | 4x-9=2x+3/3 | | 24=4=4(y-3) |